On Stieltjes integration

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

What Is the Complexity of Stieltjes Integration?

We study the complexity of approximating the Stieltjes integral R 1 0 f (x)dg(x) for functions f having r continuous derivatives and functions g whose sth derivative has bounded variation. Let r(n) denote the nth minimal error attainable by approximations using at most n evaluations of f and g, and let comp(ε) denote the ε-complexity (the minimal cost of computing an ε-approximation). We show t...

متن کامل

Computing Stieltjes constants using complex integration

The Stieltjes constants γn are the coefficients appearing in the Laurent series of the Riemann zeta function at s = 1. We give a simple and efficient method to compute a p-bit approximation of γn with rigorous error bounds. Starting from an integral representation due to Blagouchine, we shift the contour to eliminate cancellation. The integral is then evaluated numerically in ball arithmetic us...

متن کامل

Spectral Stieltjes-type Integration and Some Applications

This paper presents Stieltjes-type integration for operator-valued functions with respect to spectral families. The relation between RiemannStieltjes integrals associated with some classes of spectral families including, in particular, those that arise in the context of the Stone representation theorem for Banach spaces is established. The developed approach is applied to the structural analysi...

متن کامل

What is the complexity of Stieltjes integration ? Arthur

We study the complexity of approximating the Stieltjes integral R 1 0 f (x) dg(x) for functions f having r continuous derivatives and functions g whose sth derivative has bounded variation. Let r(n) denote the nth minimal error attainable by approximations using at most n evaluations of f and g, and let comp(") denote the "-complexity (the minimal cost of computing an "-approximation). We show ...

متن کامل

Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants

In the Laurent expansion ζ(s, a) = 1 s− 1 + ∞ ∑ k=0 (−1)γk(a) k! (s− 1) , 0 < a ≤ 1, of the Riemann-Hurwitz zeta function, the coefficients γk(a) are known as Stieltjes, or generalized Euler, constants. [When a = 1, ζ(s, 1) = ζ(s) (the Riemann zeta function), and γk(1) = γk.] We present a new approach to high-precision approximation of γk(a). Plots of our results reveal much structure in the gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1956

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1956-0075280-9